Finish up chapter 1 examples
This commit is contained in:
parent
9ded988259
commit
fd5a24d122
248
chapter1.scm
Normal file
248
chapter1.scm
Normal file
@ -0,0 +1,248 @@
|
|||||||
|
#lang sicp
|
||||||
|
(define (average x y) (/ (+ x y) 2))
|
||||||
|
(define (square x) (* x x))
|
||||||
|
(define (cube x) (* x x x))
|
||||||
|
(define (% a b)
|
||||||
|
(remainder a b))
|
||||||
|
|
||||||
|
;(define (sqrt x)
|
||||||
|
; (define (good-enough? guess)
|
||||||
|
; (< (abs (- (square guess) x)) 0.00001))
|
||||||
|
; (define (improve guess)
|
||||||
|
; (average guess (/ x guess)))
|
||||||
|
; (define (sqrt-iter guess)
|
||||||
|
; (if (good-enough? guess)
|
||||||
|
; guess
|
||||||
|
; (sqrt-iter (improve guess))))
|
||||||
|
; (sqrt-iter 1.0))
|
||||||
|
|
||||||
|
;(define (factorial n)
|
||||||
|
; (if (= n 1) 1 (* n (factorial (- n 1)))))
|
||||||
|
|
||||||
|
(define (factorial n)
|
||||||
|
(define (fact-iter product counter max-count)
|
||||||
|
(if (> counter max-count)
|
||||||
|
product
|
||||||
|
(fact-iter (* counter product)
|
||||||
|
(+ counter 1)
|
||||||
|
max-count)))
|
||||||
|
(fact-iter 1 1 n))
|
||||||
|
|
||||||
|
|
||||||
|
(define (A x y)
|
||||||
|
(cond ((= y 0) 0)
|
||||||
|
((= x 0) (* 2 y))
|
||||||
|
((= y 1) 2)
|
||||||
|
(else (A (- x 1)
|
||||||
|
(A x (- y 1))))))
|
||||||
|
|
||||||
|
;(define (fib n)
|
||||||
|
; (cond ((= n 0) 0)
|
||||||
|
; ((= n 1) 1)
|
||||||
|
; (else (+ (fib(- n 1))
|
||||||
|
; (fib(- n 2))))))
|
||||||
|
|
||||||
|
(define (fib n)
|
||||||
|
(define (fib-iter a b count)
|
||||||
|
(if (= count 0)
|
||||||
|
b
|
||||||
|
(fib-iter (+ a b) a (- count 1))))
|
||||||
|
|
||||||
|
(fib-iter 1 0 n))
|
||||||
|
|
||||||
|
|
||||||
|
(define (count-change amount)
|
||||||
|
(define (first-denomination kinds-of-coins)
|
||||||
|
(cond ((= kinds-of-coins 1) 1)
|
||||||
|
((= kinds-of-coins 2) 5)
|
||||||
|
((= kinds-of-coins 3) 10)
|
||||||
|
((= kinds-of-coins 4) 25)
|
||||||
|
((= kinds-of-coins 5) 50)))
|
||||||
|
|
||||||
|
(define (cc amount kinds-of-coins)
|
||||||
|
(cond ((= amount 0) 1)
|
||||||
|
((or (< amount 0)
|
||||||
|
(= kinds-of-coins 0))
|
||||||
|
0)
|
||||||
|
(else
|
||||||
|
(+ (cc amount (- kinds-of-coins 1))
|
||||||
|
(cc (- amount (first-denomination kinds-of-coins))
|
||||||
|
kinds-of-coins)))))
|
||||||
|
(cc amount 5))
|
||||||
|
|
||||||
|
|
||||||
|
(define (ptri n)
|
||||||
|
(if (< n 3) n
|
||||||
|
(+
|
||||||
|
(ptri (- n 1))
|
||||||
|
(+ (* (ptri (- n 2)) 2)
|
||||||
|
(* (ptri (- n 3)) 3)))))
|
||||||
|
|
||||||
|
|
||||||
|
(define (p x) (- (* 3 x) (* 4 (cube x))))
|
||||||
|
(define (sine angle)
|
||||||
|
(if (not (> (abs angle) 0.1))
|
||||||
|
angle
|
||||||
|
(p (sine (/ angle 3.0)))))
|
||||||
|
|
||||||
|
;(define (expt b n)
|
||||||
|
; (if (= n 0) 1 (* b (expt b (- n 1)))))
|
||||||
|
|
||||||
|
(define (expt b n) (expt-iter b n 1))
|
||||||
|
(define (expt-iter b counter product)
|
||||||
|
(if (= counter 0)
|
||||||
|
product
|
||||||
|
(expt-iter b
|
||||||
|
(- counter 1)
|
||||||
|
(* b product))))
|
||||||
|
|
||||||
|
(define (fast-exp b n)
|
||||||
|
(cond ((= n 0)
|
||||||
|
1)
|
||||||
|
((even? n)
|
||||||
|
(square (fast-exp b (/ n 2))))
|
||||||
|
(else
|
||||||
|
(* b (fast-exp b (- n 1))))))
|
||||||
|
|
||||||
|
(define (gcd a b)
|
||||||
|
(if (= b 0)
|
||||||
|
a
|
||||||
|
(gcd b (% a b))))
|
||||||
|
|
||||||
|
(define (smallest-divisor n)
|
||||||
|
(find-divisor n 2))
|
||||||
|
|
||||||
|
(define (find-divisor n test-divisor)
|
||||||
|
(cond ((> (square test-divisor) n)
|
||||||
|
n)
|
||||||
|
((divides? test-divisor n)
|
||||||
|
test-divisor)
|
||||||
|
(else (find-divisor
|
||||||
|
n
|
||||||
|
(+ test-divisor 1)))))
|
||||||
|
|
||||||
|
(define (divides? a b)
|
||||||
|
(= (% b a) 0))
|
||||||
|
|
||||||
|
(define (prime? n)
|
||||||
|
(= n (smallest-divisor n)))
|
||||||
|
|
||||||
|
(define (expmod base exp m)
|
||||||
|
(cond ((= exp 0) 1)
|
||||||
|
((even? exp)
|
||||||
|
(remainder
|
||||||
|
(square (expmod base (/ exp 2) m))
|
||||||
|
m))
|
||||||
|
(else
|
||||||
|
(remainder
|
||||||
|
(* base (expmod base (- exp 1) m))
|
||||||
|
m))))
|
||||||
|
|
||||||
|
(define (fermat-test n)
|
||||||
|
(define (try-it a)
|
||||||
|
(= (expmod a n n) a))
|
||||||
|
(try-it (+ 1 (random (- n 1)))))
|
||||||
|
|
||||||
|
(define (fast-prime? n times)
|
||||||
|
(cond ((= times 0) true)
|
||||||
|
((fermat-test n)
|
||||||
|
(fast-prime? n (- times 1)))
|
||||||
|
(else false)))
|
||||||
|
|
||||||
|
(define (timed-prime-test n)
|
||||||
|
(newline)
|
||||||
|
(display n)
|
||||||
|
(start-prime-test n (runtime)))
|
||||||
|
|
||||||
|
(define (start-prime-test n start-time)
|
||||||
|
(if (prime? n)
|
||||||
|
(report-prime ( - (runtime) start-time))))
|
||||||
|
|
||||||
|
(define (report-prime elapsed-time)
|
||||||
|
(display " *** ")
|
||||||
|
(display elapsed-time))
|
||||||
|
|
||||||
|
;(define (sum-integers a b)
|
||||||
|
; (if (> a b)
|
||||||
|
; 0
|
||||||
|
; (+ a (sum-integers (+ a 1) b))))
|
||||||
|
|
||||||
|
;(define (sum-cubes a b)
|
||||||
|
; (if (> a b)
|
||||||
|
; 0
|
||||||
|
; (+ (cube a) (sum-cubes (+ a 1) b))))
|
||||||
|
|
||||||
|
;(define (pi-sum a b)
|
||||||
|
; (if (> a b)
|
||||||
|
; 0
|
||||||
|
; (+ (/ 1.0 (* a (+ a 2)))
|
||||||
|
; (pi-sum (+ a 4) b))))
|
||||||
|
|
||||||
|
(define (sum term a next b)
|
||||||
|
(if (> a b)
|
||||||
|
0
|
||||||
|
(+ (term a)
|
||||||
|
(sum term (next a) next b))))
|
||||||
|
|
||||||
|
(define (inc n) (+ n 1))
|
||||||
|
(define (sum-cubes a b)
|
||||||
|
(sum cube a inc b))
|
||||||
|
|
||||||
|
(define (identity x) x)
|
||||||
|
(define (sum-integers a b)
|
||||||
|
(sum identity a inc b))
|
||||||
|
|
||||||
|
(define (pi-sum a b)
|
||||||
|
(sum (lambda (x) (/ 1.0 (* x (+ x 2))))
|
||||||
|
a
|
||||||
|
(lambda (x) (+ x 4))
|
||||||
|
b))
|
||||||
|
|
||||||
|
(define (integral f a b dx)
|
||||||
|
(* (sum f (+ a (/ dx 2.0))
|
||||||
|
(lambda (x) (+ x dx))
|
||||||
|
b)
|
||||||
|
dx))
|
||||||
|
|
||||||
|
(define (f x y)
|
||||||
|
(let ((a (+ 1 (* x y)))
|
||||||
|
(b (- 1 y)))
|
||||||
|
(+ (* x (square a))
|
||||||
|
(* y b)
|
||||||
|
(* a b))))
|
||||||
|
|
||||||
|
(define tolerance 0.00001)
|
||||||
|
(define (fixed-point f first-guess)
|
||||||
|
(define (close-enough? v1 v2)
|
||||||
|
(< (abs (- v1 v2))
|
||||||
|
tolerance))
|
||||||
|
(define (try guess)
|
||||||
|
(let ((next (f guess)))
|
||||||
|
(if (close-enough? guess next)
|
||||||
|
next
|
||||||
|
(try next))))
|
||||||
|
(try first-guess))
|
||||||
|
|
||||||
|
(define (average-damp f)
|
||||||
|
(lambda (x)
|
||||||
|
(average x (f x))))
|
||||||
|
|
||||||
|
(define dx 0.00001)
|
||||||
|
(define (deriv g)
|
||||||
|
(lambda (x)
|
||||||
|
(/ (- (g (+ x dx)) (g x))
|
||||||
|
dx)))
|
||||||
|
|
||||||
|
(define (newton-transform g)
|
||||||
|
(lambda (x)
|
||||||
|
(- x (/ (g x)
|
||||||
|
((deriv g) x)))))
|
||||||
|
|
||||||
|
(define (newtons-method g guess)
|
||||||
|
(fixed-point (newton-transform g) guess))
|
||||||
|
|
||||||
|
(define (sqrt x)
|
||||||
|
(newtons-method
|
||||||
|
(lambda (y)
|
||||||
|
(- (square y) x))
|
||||||
|
1.0))
|
128
lib.scm
128
lib.scm
@ -1,128 +0,0 @@
|
|||||||
#lang sicp
|
|
||||||
(define (average x y) (/ (+ x y) 2))
|
|
||||||
(define (square x) (* x x))
|
|
||||||
(define (cube x) (* x x x))
|
|
||||||
(define (% a b)
|
|
||||||
(remainder a b))
|
|
||||||
|
|
||||||
(define (sqrt x)
|
|
||||||
(define (good-enough? guess)
|
|
||||||
(< (abs (- (square guess) x)) 0.00001))
|
|
||||||
(define (improve guess)
|
|
||||||
(average guess (/ x guess)))
|
|
||||||
(define (sqrt-iter guess)
|
|
||||||
(if (good-enough? guess)
|
|
||||||
guess
|
|
||||||
(sqrt-iter (improve guess))))
|
|
||||||
(sqrt-iter 1.0))
|
|
||||||
|
|
||||||
;(define (factorial n)
|
|
||||||
; (if (= n 1) 1 (* n (factorial (- n 1)))))
|
|
||||||
|
|
||||||
(define (factorial n)
|
|
||||||
(define (fact-iter product counter max-count)
|
|
||||||
(if (> counter max-count)
|
|
||||||
product
|
|
||||||
(fact-iter (* counter product)
|
|
||||||
(+ counter 1)
|
|
||||||
max-count)))
|
|
||||||
(fact-iter 1 1 n))
|
|
||||||
|
|
||||||
|
|
||||||
(define (A x y)
|
|
||||||
(cond ((= y 0) 0)
|
|
||||||
((= x 0) (* 2 y))
|
|
||||||
((= y 1) 2)
|
|
||||||
(else (A (- x 1)
|
|
||||||
(A x (- y 1))))))
|
|
||||||
|
|
||||||
;(define (fib n)
|
|
||||||
; (cond ((= n 0) 0)
|
|
||||||
; ((= n 1) 1)
|
|
||||||
; (else (+ (fib(- n 1))
|
|
||||||
; (fib(- n 2))))))
|
|
||||||
|
|
||||||
(define (fib n)
|
|
||||||
(define (fib-iter a b count)
|
|
||||||
(if (= count 0)
|
|
||||||
b
|
|
||||||
(fib-iter (+ a b) a (- count 1))))
|
|
||||||
|
|
||||||
(fib-iter 1 0 n))
|
|
||||||
|
|
||||||
|
|
||||||
(define (count-change amount)
|
|
||||||
(define (first-denomination kinds-of-coins)
|
|
||||||
(cond ((= kinds-of-coins 1) 1)
|
|
||||||
((= kinds-of-coins 2) 5)
|
|
||||||
((= kinds-of-coins 3) 10)
|
|
||||||
((= kinds-of-coins 4) 25)
|
|
||||||
((= kinds-of-coins 5) 50)))
|
|
||||||
|
|
||||||
(define (cc amount kinds-of-coins)
|
|
||||||
(cond ((= amount 0) 1)
|
|
||||||
((or (< amount 0)
|
|
||||||
(= kinds-of-coins 0))
|
|
||||||
0)
|
|
||||||
(else
|
|
||||||
(+ (cc amount (- kinds-of-coins 1))
|
|
||||||
(cc (- amount (first-denomination kinds-of-coins))
|
|
||||||
kinds-of-coins)))))
|
|
||||||
(cc amount 5))
|
|
||||||
|
|
||||||
|
|
||||||
(define (ptri n)
|
|
||||||
(if (< n 3) n
|
|
||||||
(+
|
|
||||||
(ptri (- n 1))
|
|
||||||
(+ (* (ptri (- n 2)) 2)
|
|
||||||
(* (ptri (- n 3)) 3)))))
|
|
||||||
|
|
||||||
|
|
||||||
(define (p x) (- (* 3 x) (* 4 (cube x))))
|
|
||||||
(define (sine angle)
|
|
||||||
(if (not (> (abs angle) 0.1))
|
|
||||||
angle
|
|
||||||
(p (sine (/ angle 3.0)))))
|
|
||||||
|
|
||||||
;(define (expt b n)
|
|
||||||
; (if (= n 0) 1 (* b (expt b (- n 1)))))
|
|
||||||
|
|
||||||
(define (expt b n) (expt-iter b n 1))
|
|
||||||
(define (expt-iter b counter product)
|
|
||||||
(if (= counter 0)
|
|
||||||
product
|
|
||||||
(expt-iter b
|
|
||||||
(- counter 1)
|
|
||||||
(* b product))))
|
|
||||||
|
|
||||||
(define (fast-exp b n)
|
|
||||||
(cond ((= n 0)
|
|
||||||
1)
|
|
||||||
((even? n)
|
|
||||||
(square (fast-exp b (/ n 2))))
|
|
||||||
(else
|
|
||||||
(* b (fast-exp b (- n 1))))))
|
|
||||||
|
|
||||||
(define (gcd a b)
|
|
||||||
(if (= b 0)
|
|
||||||
a
|
|
||||||
(gcd b (% a b))))
|
|
||||||
|
|
||||||
(define (smallest-divisor n)
|
|
||||||
(find-divisor n 2))
|
|
||||||
|
|
||||||
(define (find-divisor n test-divisor)
|
|
||||||
(cond ((> (square test-divisor) n)
|
|
||||||
n)
|
|
||||||
((divides? test-divisor n)
|
|
||||||
test-divisor)
|
|
||||||
(else (find-divisor
|
|
||||||
n
|
|
||||||
(+ test-divisor 1)))))
|
|
||||||
|
|
||||||
(define (divides? a b)
|
|
||||||
(= (% b a) 0))
|
|
||||||
|
|
||||||
(define (prime? n)
|
|
||||||
(= n (smallest-divisor n)))
|
|
Loading…
Reference in New Issue
Block a user