197 lines
6.6 KiB
Rust
197 lines
6.6 KiB
Rust
|
use super::MapBuilder;
|
||
|
use crate::{components::Position, spawner, Map, TileType, SHOW_MAPGEN_VISUALIZER};
|
||
|
use rltk::RandomNumberGenerator;
|
||
|
use specs::prelude::*;
|
||
|
use std::collections::HashMap;
|
||
|
|
||
|
pub struct CellularAutomataBuilder {
|
||
|
map: Map,
|
||
|
starting_position: Position,
|
||
|
depth: i32,
|
||
|
history: Vec<Map>,
|
||
|
noise_areas: HashMap<i32, Vec<usize>>,
|
||
|
}
|
||
|
|
||
|
impl MapBuilder for CellularAutomataBuilder {
|
||
|
fn build_map(&mut self) {
|
||
|
self.build();
|
||
|
}
|
||
|
|
||
|
fn spawn_entities(&mut self, ecs: &mut World) {
|
||
|
for area in self.noise_areas.iter() {
|
||
|
spawner::spawn_region(ecs, area.1, self.depth);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
fn get_map(&self) -> Map {
|
||
|
self.map.clone()
|
||
|
}
|
||
|
|
||
|
fn get_starting_position(&self) -> Position {
|
||
|
self.starting_position
|
||
|
}
|
||
|
|
||
|
fn get_snapshot_history(&self) -> Vec<Map> {
|
||
|
self.history.clone()
|
||
|
}
|
||
|
|
||
|
fn take_snapshot(&mut self) {
|
||
|
if SHOW_MAPGEN_VISUALIZER {
|
||
|
let mut snapshot = self.map.clone();
|
||
|
for v in snapshot.revealed_tiles.iter_mut() {
|
||
|
*v = true;
|
||
|
}
|
||
|
|
||
|
self.history.push(snapshot);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
impl CellularAutomataBuilder {
|
||
|
pub fn new(new_depth: i32) -> CellularAutomataBuilder {
|
||
|
CellularAutomataBuilder {
|
||
|
map: Map::new(new_depth),
|
||
|
starting_position: Position::default(),
|
||
|
depth: new_depth,
|
||
|
history: Vec::new(),
|
||
|
noise_areas: HashMap::new(),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
fn build(&mut self) {
|
||
|
let mut rng = RandomNumberGenerator::new();
|
||
|
|
||
|
// First we completely randomize the map, setting 55% of it to be floor.
|
||
|
for y in 1..self.map.height - 1 {
|
||
|
for x in 1..self.map.width - 1 {
|
||
|
let roll = rng.roll_dice(1, 100);
|
||
|
let idx = self.map.xy_idx(x, y);
|
||
|
|
||
|
if roll > 55 {
|
||
|
self.map.tiles[idx] = TileType::Floor
|
||
|
} else {
|
||
|
self.map.tiles[idx] = TileType::Wall
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
self.take_snapshot();
|
||
|
|
||
|
// Now we iteratively apply cellular automata rules
|
||
|
for _i in 0..15 {
|
||
|
let mut newtiles = self.map.tiles.clone();
|
||
|
|
||
|
for y in 1..self.map.height - 1 {
|
||
|
for x in 1..self.map.width - 1 {
|
||
|
let idx = self.map.xy_idx(x, y);
|
||
|
let mut neighbors = 0;
|
||
|
|
||
|
if self.map.tiles[idx - 1] == TileType::Wall {
|
||
|
neighbors += 1;
|
||
|
}
|
||
|
if self.map.tiles[idx + 1] == TileType::Wall {
|
||
|
neighbors += 1;
|
||
|
}
|
||
|
if self.map.tiles[idx - self.map.width as usize] == TileType::Wall {
|
||
|
neighbors += 1;
|
||
|
}
|
||
|
if self.map.tiles[idx + self.map.width as usize] == TileType::Wall {
|
||
|
neighbors += 1;
|
||
|
}
|
||
|
if self.map.tiles[idx - (self.map.width as usize - 1)] == TileType::Wall {
|
||
|
neighbors += 1;
|
||
|
}
|
||
|
if self.map.tiles[idx - (self.map.width as usize + 1)] == TileType::Wall {
|
||
|
neighbors += 1;
|
||
|
}
|
||
|
if self.map.tiles[idx + (self.map.width as usize - 1)] == TileType::Wall {
|
||
|
neighbors += 1;
|
||
|
}
|
||
|
if self.map.tiles[idx + (self.map.width as usize + 1)] == TileType::Wall {
|
||
|
neighbors += 1;
|
||
|
}
|
||
|
|
||
|
if neighbors > 4 || neighbors == 0 {
|
||
|
newtiles[idx] = TileType::Wall;
|
||
|
} else {
|
||
|
newtiles[idx] = TileType::Floor;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
self.map.tiles = newtiles.clone();
|
||
|
self.take_snapshot();
|
||
|
}
|
||
|
|
||
|
// Find a starting point; start at the middle and walk left until we find an open tile
|
||
|
self.starting_position = Position {
|
||
|
x: self.map.width / 2,
|
||
|
y: self.map.height / 2,
|
||
|
};
|
||
|
let mut start_idx = self
|
||
|
.map
|
||
|
.xy_idx(self.starting_position.x, self.starting_position.y);
|
||
|
while self.map.tiles[start_idx] != TileType::Floor {
|
||
|
self.starting_position.x -= 1;
|
||
|
start_idx = self
|
||
|
.map
|
||
|
.xy_idx(self.starting_position.x, self.starting_position.y)
|
||
|
}
|
||
|
|
||
|
// Find all tiles we can reach from the starting point
|
||
|
let map_starts: Vec<usize> = vec![start_idx];
|
||
|
let dijkstra_map = rltk::DijkstraMap::new(
|
||
|
self.map.width,
|
||
|
self.map.height,
|
||
|
&map_starts,
|
||
|
&self.map,
|
||
|
200.0,
|
||
|
);
|
||
|
let mut exit_tile = (0, 0.0f32);
|
||
|
for (i, tile) in self.map.tiles.iter_mut().enumerate() {
|
||
|
if *tile == TileType::Floor {
|
||
|
let distance_to_start = dijkstra_map.map[i];
|
||
|
|
||
|
// We can't get to this tile - so we'll make it a wall
|
||
|
if distance_to_start == f32::MAX {
|
||
|
*tile = TileType::Wall;
|
||
|
} else {
|
||
|
// If it is further away than our current exit candidate, move the exit
|
||
|
if distance_to_start > exit_tile.1 {
|
||
|
exit_tile.0 = i;
|
||
|
exit_tile.1 = distance_to_start;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
self.take_snapshot();
|
||
|
|
||
|
// Place the stairs
|
||
|
self.map.tiles[exit_tile.0] = TileType::DownStairs;
|
||
|
self.take_snapshot();
|
||
|
|
||
|
// Now we build a noise map for use in spawning entities later
|
||
|
let mut noise = rltk::FastNoise::seeded(rng.roll_dice(1, 65536) as u64);
|
||
|
noise.set_noise_type(rltk::NoiseType::Cellular);
|
||
|
noise.set_frequency(0.08);
|
||
|
noise.set_cellular_distance_function(rltk::CellularDistanceFunction::Manhattan);
|
||
|
|
||
|
for y in 1..self.map.height - 1 {
|
||
|
for x in 1..self.map.width - 1 {
|
||
|
let idx = self.map.xy_idx(x, y);
|
||
|
if self.map.tiles[idx] == TileType::Floor {
|
||
|
let cell_value_f = noise.get_noise(x as f32, y as f32) * 10240.0;
|
||
|
let cell_value = cell_value_f as i32;
|
||
|
|
||
|
#[allow(clippy::map_entry)]
|
||
|
if self.noise_areas.contains_key(&cell_value) {
|
||
|
self.noise_areas.get_mut(&cell_value).unwrap().push(idx);
|
||
|
} else {
|
||
|
self.noise_areas.insert(cell_value, vec![idx]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|