rusty-numbers/src/rational.rs

387 lines
10 KiB
Rust

//! # Rational Numbers (fractions)
use core::cmp::{Ord, Ordering, PartialOrd};
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use crate::num::Sign::{Negative, Positive};
use crate::num::{FracOp, Int, Sign, Unsigned};
/// Type representing a fraction
///
/// There are three basic constructors:
///
/// ```
/// use rusty_numbers::frac;
/// use rusty_numbers::rational::Frac;
///
/// // Macro
/// let reduced_macro = frac!(3 / 4);
///
/// // Frac::new (called by the macro)
/// let reduced = Frac::new(3, 4);
/// # assert_eq!(reduced_macro, reduced);
///
/// // Frac::new_unreduced
/// let unreduced = Frac::new_unreduced(4, 16);
/// ```
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct Frac<T: Unsigned = usize> {
numerator: T,
denominator: T,
sign: Sign,
}
/// Create a [Frac](rational/struct.Frac.html) type with signed or unsigned number literals
///
/// Example:
/// ```
/// use rusty_numbers::frac;
///
/// // Proper fractions
/// frac!(1 / 3);
///
/// // Improper fractions
/// frac!(4 / 3);
///
/// // Whole numbers
/// frac!(5u8);
///
/// // Whole numbers and fractions
/// frac!(1 1/2);
/// ```
#[macro_export]
macro_rules! frac {
($w:literal $n:literal / $d:literal) => {
frac!($w) + frac!($n / $d)
};
($n:literal / $d:literal) => {
$crate::rational::Frac::new($n, $d)
};
($w:literal) => {
$crate::rational::Frac::new($w, 1)
};
}
impl<T: Unsigned> Frac<T> {
/// Create a new rational number from signed or unsigned arguments
///
/// Generally, you will probably prefer to use the [frac!](../macro.frac.html) macro
/// instead, as that is easier for mixed fractions and whole numbers
///
/// # Panics
/// if `d` is 0, this constructor will panic
pub fn new<N: Int<Un = T>>(n: N, d: N) -> Frac<T> {
Self::new_unreduced(n, d).reduce()
}
/// Create a new rational number from signed or unsigned arguments
/// where the resulting fraction is not reduced
///
/// # Panics
/// if `d` is 0, this constructor will panic
pub fn new_unreduced<N: Int<Un = T>>(n: N, d: N) -> Frac<T> {
assert!(!d.is_zero(), "Fraction can not have a zero denominator");
let mut sign = Positive;
if n.is_neg() {
sign = !sign;
}
if d.is_neg() {
sign = !sign;
}
// Convert the possibly signed arguments to unsigned values
let numerator = n.to_unsigned();
let denominator = d.to_unsigned();
Frac {
numerator,
denominator,
sign,
}
}
/// Create a new, reduced rational from all the raw parts
///
/// # Panics
/// if `d` is 0, this constructor will panic
fn raw(n: T, d: T, s: Sign) -> Frac<T> {
assert!(!d.is_zero(), "Fraction can not have a zero denominator");
Frac {
numerator: n,
denominator: d,
sign: s,
}
.reduce()
}
/// Determine the output sign given the two input signs
fn get_sign(a: Self, b: Self, op: FracOp) -> Sign {
// -a + -b = -c
if op == FracOp::Addition && a.sign == Negative && b.sign == Negative {
return Negative;
}
// a - -b = c
if op == FracOp::Subtraction && a.sign == Positive && b.sign == Negative {
return Positive;
}
if a.sign == b.sign {
Positive
} else {
Negative
}
}
/// Convert the fraction to its simplest form
pub fn reduce(mut self) -> Self {
let gcd = T::gcd(self.numerator, self.denominator);
self.numerator /= gcd;
self.denominator /= gcd;
self
}
}
impl<T: Unsigned> PartialOrd for Frac<T> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<T: Unsigned> Ord for Frac<T> {
fn cmp(&self, other: &Self) -> Ordering {
if self.sign != other.sign {
return if self.sign == Positive {
Ordering::Greater
} else {
Ordering::Less
};
}
if self.denominator == other.denominator {
return self.numerator.cmp(&other.numerator);
}
let mut a = self.reduce();
let mut b = other.reduce();
if a.denominator == b.denominator {
return a.numerator.cmp(&b.numerator);
}
let lcm = T::lcm(self.denominator, other.denominator);
let x = lcm / self.denominator;
let y = lcm / other.denominator;
a.numerator *= x;
a.denominator *= x;
b.numerator *= y;
b.denominator *= y;
a.numerator.cmp(&b.numerator)
}
}
impl<T: Unsigned> Mul for Frac<T> {
type Output = Self;
fn mul(self, rhs: Self) -> Self {
let numerator = self.numerator * rhs.numerator;
let denominator = self.denominator * rhs.denominator;
let sign = Self::get_sign(self, rhs, FracOp::Other);
Self::raw(numerator, denominator, sign)
}
}
impl<T: Unsigned> MulAssign for Frac<T> {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl<T: Unsigned> Div for Frac<T> {
type Output = Self;
fn div(self, rhs: Self) -> Self {
let numerator = self.numerator * rhs.denominator;
let denominator = self.denominator * rhs.numerator;
let sign = Self::get_sign(self, rhs, FracOp::Other);
Self::raw(numerator, denominator, sign)
}
}
impl<T: Unsigned> DivAssign for Frac<T> {
fn div_assign(&mut self, rhs: Self) {
*self = *self / rhs;
}
}
impl<T: Unsigned> Add for Frac<T> {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
let a = self;
let b = rhs;
// If the sign of one input differs,
// subtraction is equivalent
if a.sign == Negative && b.sign == Positive {
return b - -a;
} else if a.sign == Positive && b.sign == Negative {
return a - -b;
}
// Find a common denominator if needed
if a.denominator != b.denominator {
// Let's just use the simplest method, rather than
// worrying about reducing to the least common denominator
let numerator = (a.numerator * b.denominator) + (b.numerator * a.denominator);
let denominator = a.denominator * b.denominator;
let sign = Self::get_sign(a, b, FracOp::Addition);
return Self::raw(numerator, denominator, sign);
}
let numerator = a.numerator + b.numerator;
let denominator = self.denominator;
let sign = Self::get_sign(a, b, FracOp::Addition);
Self::raw(numerator, denominator, sign)
}
}
impl<T: Unsigned> AddAssign for Frac<T> {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl<T: Unsigned> Sub for Frac<T> {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
let a = self;
let b = rhs;
if a.sign == Positive && b.sign == Negative {
return a + -b;
} else if a.sign == Negative && b.sign == Positive {
return -(b + -a);
}
if a.denominator != b.denominator {
let (numerator, overflowed) =
(a.numerator * b.denominator).left_overflowing_sub(b.numerator * a.denominator);
let denominator = a.denominator * b.denominator;
let sign = Self::get_sign(a, b, FracOp::Subtraction);
let res = Self::raw(numerator, denominator, sign);
return if overflowed { -res } else { res };
}
let (numerator, overflowed) = a.numerator.left_overflowing_sub(b.numerator);
let denominator = a.denominator;
let sign = Self::get_sign(a, b, FracOp::Subtraction);
let res = Self::raw(numerator, denominator, sign);
if overflowed {
-res
} else {
res
}
}
}
impl<T: Unsigned> SubAssign for Frac<T> {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl<T: Unsigned> Neg for Frac<T> {
type Output = Self;
fn neg(self) -> Self::Output {
let mut out = self;
out.sign = !self.sign;
out
}
}
#[cfg(test)]
#[cfg(not(tarpaulin_include))]
mod tests {
use super::*;
#[test]
#[should_panic(expected = "Fraction can not have a zero denominator")]
fn zero_denominator() {
Frac::raw(1u8, 0u8, Sign::default());
}
#[test]
#[should_panic(expected = "Fraction can not have a zero denominator")]
fn zero_denominator_new() {
frac!(1 / 0);
}
#[test]
fn test_get_sign() {
assert_eq!(
Sign::Positive,
Frac::get_sign(frac!(1), frac!(-1), FracOp::Subtraction)
);
assert_eq!(
Sign::Negative,
Frac::get_sign(frac!(-1), frac!(-1), FracOp::Addition)
);
assert_eq!(
Sign::Negative,
Frac::get_sign(frac!(-1), frac!(1), FracOp::Addition)
);
assert_eq!(
Sign::Negative,
Frac::get_sign(frac!(-1), frac!(1), FracOp::Subtraction)
);
assert_eq!(
Sign::Negative,
Frac::get_sign(frac!(-1), frac!(1), FracOp::Other)
);
}
#[test]
fn test_cmp() {
assert_eq!(Ordering::Greater, frac!(3 / 4).cmp(&frac!(1 / 4)));
assert_eq!(Ordering::Less, frac!(1 / 4).cmp(&frac!(3 / 4)));
assert_eq!(Ordering::Equal, frac!(1 / 2).cmp(&frac!(4 / 8)));
}
#[test]
fn macro_test() {
let frac1 = frac!(1 / 3);
let frac2 = frac!(1u32 / 3);
assert_eq!(frac1, frac2);
let frac1 = -frac!(1 / 2);
let frac2 = -frac!(1u32 / 2);
assert_eq!(frac1, frac2);
assert_eq!(frac!(3 / 2), frac!(1 1/2));
assert_eq!(frac!(3 / 1), frac!(3));
assert_eq!(-frac!(1 / 2), frac!(-1 / 2));
assert_eq!(-frac!(1 / 2), frac!(1 / -2));
assert_eq!(frac!(1 / 2), frac!(-1 / -2));
}
}