Much improvement of addition and subtraction
All checks were successful
timw4mail/rusty-numbers/pipeline/head This commit looks good

This commit is contained in:
Timothy Warren 2020-02-19 14:08:43 -05:00
parent 55d2d407e3
commit 84656e74c9
2 changed files with 87 additions and 30 deletions

View File

@ -90,6 +90,14 @@ pub trait Int:
/// Is this number less than zero?
fn is_neg(self) -> bool;
/// Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic
/// overflow would occur. If an overflow would have occurred then the wrapped value is returned.
fn left_overflowing_sub(self, rhs: Self) -> (Self, bool);
/// Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic
/// overflow would occur. If an overflow would have occurred then the wrapped value is returned.
fn left_overflowing_mul(self, rhs: Self) -> (Self, bool);
/// Convert to an unsigned number
///
/// A meaningless operation when implemented on an
@ -167,6 +175,28 @@ macro_rules! impl_int {
// between the same bit size
<$un_type>::try_from(self).unwrap()
}
fn left_overflowing_mul(self, rhs: Self) -> (Self, bool) {
let (res, overflow) = <$type>::overflowing_mul(self, rhs);
let res = if overflow {
<$type>::max_value() - res + 1
} else {
res
};
(res, overflow)
}
fn left_overflowing_sub(self, rhs: Self) -> (Self, bool) {
let (res, overflow) = <$type>::overflowing_sub(self, rhs);
let res = if overflow {
<$type>::max_value() - res + 1
} else {
res
};
(res, overflow)
}
}
)*
}

View File

@ -1,6 +1,7 @@
//! # Rational Numbers (fractions)
use crate::num::*;
use crate::num::Sign::*;
use std::cmp::{Ord, Ordering, PartialOrd};
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
@ -41,6 +42,7 @@ macro_rules! frac {
#[derive(Debug, Copy, Clone, PartialEq)]
enum FracOp {
Addition,
Subtraction,
Other,
}
@ -50,18 +52,18 @@ impl<T: Unsigned> Frac<T> {
///
/// Generally, you will probably prefer to use the [frac!](../macro.frac.html) macro
/// instead, as that is easier for mixed fractions and whole numbers
pub fn new<N: Int + Int<Un = T>>(n: N, d: N) -> Frac<T> {
pub fn new<N: Int<Un = T>>(n: N, d: N) -> Frac<T> {
Self::new_unreduced(n, d).reduce()
}
/// Create a new rational number from signed or unsigned arguments
/// where the resulting fraction is not reduced
pub fn new_unreduced<N: Int + Int<Un = T>>(n: N, d: N) -> Frac<T> {
pub fn new_unreduced<N: Int<Un = T>>(n: N, d: N) -> Frac<T> {
if d.is_zero() {
panic!("Fraction can not have a zero denominator");
}
let mut sign = Sign::Positive;
let mut sign = Positive;
if n.is_neg() {
sign = !sign;
@ -71,6 +73,7 @@ impl<T: Unsigned> Frac<T> {
sign = !sign;
}
// Convert the possibly signed arguments to unsigned values
let numer = n.to_unsigned();
let denom = d.to_unsigned();
@ -81,7 +84,7 @@ impl<T: Unsigned> Frac<T> {
}
}
/// Create a new rational from the raw parts
/// Create a new rational from all the raw parts
fn raw(n: T, d: T, s: Sign) -> Frac<T> {
if d.is_zero() {
panic!("Fraction can not have a zero denominator");
@ -96,14 +99,22 @@ impl<T: Unsigned> Frac<T> {
/// Determine the output sign given the two input signs
fn get_sign(a: Self, b: Self, c: FracOp) -> Sign {
if a.sign != b.sign {
if c == FracOp::Subtraction && b.sign == Sign::Negative {
Sign::Positive
if c == FracOp::Addition {
return if a.sign == Positive && b.sign == Positive {
Positive
} else {
Sign::Negative
Negative
};
}
if a.sign != b.sign {
if c == FracOp::Subtraction && b.sign == Negative {
Positive
} else {
Negative
}
} else {
Sign::Positive
Positive
}
}
@ -132,7 +143,7 @@ where
{
fn cmp(&self, other: &Self) -> Ordering {
if self.sign != other.sign {
return if self.sign == Sign::Positive {
return if self.sign == Positive {
Ordering::Greater
} else {
Ordering::Less
@ -147,7 +158,6 @@ where
let mut b = other.reduce();
if a.denom == b.denom {
assert!(false, "{:#?}\n{:#?}", a, b);
return a.numer.cmp(&b.numer);
}
@ -231,12 +241,10 @@ where
// If the sign of one input differs,
// subtraction is equivalent
if self.sign != rhs.sign {
if a > b {
return a - b;
} else if a < b {
return b - a;
}
if a.sign == Negative && b.sign == Positive {
return b - -a;
} else if a.sign == Positive && b.sign == Negative {
return a - -b;
}
// Find a common denominator if needed
@ -245,14 +253,14 @@ where
// worrying about reducing to the least common denominator
let numer = (a.numer * b.denom) + (b.numer * a.denom);
let denom = a.denom * b.denom;
let sign = Self::get_sign(a, b, FracOp::Other);
let sign = Self::get_sign(a, b, FracOp::Addition);
return Self::raw(numer, denom, sign);
}
let numer = a.numer + b.numer;
let denom = self.denom;
let sign = Self::get_sign(a, b, FracOp::Other);
let sign = Self::get_sign(a, b, FracOp::Addition);
Self::raw(numer, denom, sign)
}
@ -277,19 +285,31 @@ where
let a = self;
let b = rhs;
// @TODO handle sign "overflow" conditions
if a.sign == Positive && b.sign == Negative {
return a + -b;
} else if a.sign == Negative && b.sign == Positive {
return b + -a;
}
if a.denom != b.denom {
let numer = (a.numer * b.denom) - (b.numer * a.denom);
let (numer, overflowed) = (a.numer * b.denom).left_overflowing_sub(b.numer * a.denom);
let denom = a.denom * b.denom;
let sign = Self::get_sign(a, b, FracOp::Subtraction);
let mut sign = Self::get_sign(a, b, FracOp::Subtraction);
if overflowed {
sign = !sign
}
return Self::raw(numer, denom, sign);
}
let numer = a.numer - b.numer;
let (numer, overflowed) = a.numer.left_overflowing_sub(b.numer);
let denom = a.denom;
let sign = Self::get_sign(a, b, FracOp::Subtraction);
let mut sign = Self::get_sign(a, b, FracOp::Subtraction);
if overflowed {
sign = !sign
}
Self::raw(numer, denom, sign)
}
@ -308,7 +328,7 @@ impl<T: Unsigned> Neg for Frac<T> {
type Output = Self;
fn neg(self) -> Self::Output {
let mut out = self.clone();
let mut out = self;
out.sign = !self.sign;
out
@ -331,16 +351,15 @@ mod tests {
#[test]
fn add_test() {
assert_eq!(frac!(5 / 6), frac!(1 / 3) + frac!(1 / 2));
assert_eq!(frac!(5 / 6), frac!(1 / 3) + frac!(1 / 2), "1/3 + 1/2");
assert_eq!(frac!(1 / 3), frac!(2 / 3) + -frac!(1 / 3), "2/3 + -1/3");
// assert_eq!(-frac!(1 / 3), -frac!(2 / 3) + frac!(1 / 3), "-2/3 + 1/3");
}
#[test]
fn sub_test() {
assert_eq!(frac!(1 / 6), frac!(1 / 2) - frac!(1 / 3));
// assert_eq!(frac!(1), frac!(1 / 3) - -frac!(2 / 3), "1/3 - -2/3");
// assert_eq!(-frac!(1), -frac!(2 / 3) - frac!(1 / 3), "-2/3 - 1/3");
assert_eq!(4u8.left_overflowing_sub(2).0, 2u8);
assert_eq!(0u8.left_overflowing_sub(2).0, 2u8);
assert_eq!(frac!(1 / 6), frac!(1 / 2) - frac!(1 / 3), "1/2 - 1/3");
}
#[test]
@ -351,6 +370,14 @@ mod tests {
assert_eq!(frac!(1 / 2), frac!(3 / 6));
}
#[test]
fn negative_fractions() {
assert_eq!(-frac!(1 / 3), -frac!(2 / 3) + frac!(1 / 3), "-2/3 + 1/3");
assert_eq!(frac!(1), frac!(1 / 3) - -frac!(2 / 3), "1/3 - -2/3");
// assert_eq!(-frac!(1), -frac!(2 / 3) - frac!(1 / 3), "-2/3 - +1/3");
assert_eq!(-frac!(1), -frac!(2 / 3) + -frac!(1/3), "-2/3 + -1/3");
}
#[test]
fn macro_test() {
let frac1 = frac!(1 / 3);