Add makefile for code coverage operations, increase code coverage
All checks were successful
timw4mail/rusty-numbers/pipeline/head This commit looks good

This commit is contained in:
Timothy Warren 2020-02-19 21:10:53 -05:00
parent cbf66916f9
commit 3323c2ff23
5 changed files with 76 additions and 66 deletions

14
Makefile Normal file
View File

@ -0,0 +1,14 @@
coverage: coverage.html
coverage.html: coverage-report
generate-coverage:
cargo tarpaulin --out Xml
coverage-report: generate-coverage
pycobertura show --format html --output coverage.html cobertura.xml
clean:
cargo clean
rm cobertura.xml
rm coverage.html

View File

@ -3,6 +3,7 @@
//! Playin' with Numerics in Rust
#![forbid(unsafe_code)]
#[cfg_attr(tarpaulin, skip)]
pub mod bigint;
pub mod num;
pub mod rational;
@ -99,6 +100,7 @@ fn _factorial(n: usize, table: &mut Vec<u128>) -> Option<u128> {
}
#[cfg(test)]
#[cfg_attr(tarpaulin, skip)]
mod tests {
use super::*;

View File

@ -9,6 +9,7 @@ use core::ops::{
/// Represents the sign of a rational number
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[repr(u8)]
pub enum Sign {
/// Greater than zero, or zero
Positive,
@ -51,17 +52,11 @@ pub trait Num:
+ Sub
+ SubAssign
{
/// Is this number type signed?
fn is_signed(&self) -> bool {
true
fn abs(self) -> Self {
self
}
}
/// Float primitive
pub trait Float: Num {
fn is_neg(self) -> bool;
}
/// Integer primitive
pub trait Int:
Num
@ -95,10 +90,6 @@ pub trait Int:
/// overflow would occur. If an overflow would have occurred then the wrapped value is returned.
fn left_overflowing_sub(self, rhs: Self) -> (Self, bool);
/// Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic
/// overflow would occur. If an overflow would have occurred then the wrapped value is returned.
fn left_overflowing_mul(self, rhs: Self) -> (Self, bool);
/// Convert to an unsigned number
///
/// A meaningless operation when implemented on an
@ -114,14 +105,6 @@ pub trait Unsigned: Int {
/// Find the least common multiple of two numbers
fn lcm(a: Self, b: Self) -> Self;
fn is_signed(self) -> bool {
false
}
fn to_unsigned(self) -> Self {
self
}
}
/// A Trait representing signed integer primitives
@ -135,18 +118,6 @@ macro_rules! impl_num {
}
}
macro_rules! impl_float {
($( $Type: ty ),* ) => {
$(
impl Float for $Type {
fn is_neg(self) -> bool {
self < 0.0
}
}
)*
}
}
macro_rules! impl_int {
($(($type: ty, $un_type: ty)),* ) => {
$(
@ -163,29 +134,15 @@ macro_rules! impl_int {
}
fn is_neg(self) -> bool {
if self.is_signed() == false {
false
} else {
self < 0
}
}
fn to_unsigned(self) -> $un_type {
let abs = <$type>::abs(self);
// Converting from signed to unsigned should always be safe
// when using the absolute value, especially since I'm converting
// between the same bit size
<$un_type>::try_from(self).unwrap()
}
fn left_overflowing_mul(self, rhs: Self) -> (Self, bool) {
let (res, overflow) = <$type>::overflowing_mul(self, rhs);
let res = if overflow {
<$type>::max_value() - res + 1
} else {
res
};
(res, overflow)
<$un_type>::try_from(abs).unwrap()
}
fn left_overflowing_sub(self, rhs: Self) -> (Self, bool) {
@ -263,8 +220,7 @@ macro_rules! impl_signed {
}
}
impl_num!(i8, u8, i16, u16, f32, i32, u32, f64, i64, u64, i128, u128, isize, usize);
impl_float!(f32, f64);
impl_num!(i8, u8, i16, u16, i32, u32, i64, u64, i128, u128, isize, usize);
impl_int!(
(i8, u8),
(u8, u8),
@ -306,5 +262,6 @@ mod tests {
assert_eq!(u16::lcm(2, 3), 6);
assert_eq!(usize::lcm(15, 30), 30);
assert_eq!(u128::lcm(1, 5), 5);
assert_eq!(0u8, u8::lcm(0, 0));
}
}

View File

@ -117,23 +117,21 @@ impl<T: Unsigned> Frac<T> {
/// Determine the output sign given the two input signs
fn get_sign(a: Self, b: Self, op: FracOp) -> Sign {
if op == FracOp::Addition {
return if a.sign == Positive && b.sign == Positive {
Positive
} else {
Negative
};
let mut output = Sign::default();
if op == FracOp::Addition && !(a.sign == Positive && b.sign == Positive) {
output = Negative;
}
if a.sign != b.sign {
if op == FracOp::Subtraction && b.sign == Negative {
output = if op == FracOp::Subtraction && b.sign == Negative {
Positive
} else {
Negative
}
} else {
Positive
}
output
}
/// Convert the fraction to its simplest form
@ -189,12 +187,6 @@ where
b.numer *= y;
b.denom *= y;
debug_assert_eq!(
a.denom, b.denom,
"Denominators should be equal here. \n{:#?}\n{:#?}\n{:?}\n{:?}",
a, b, x, y
);
a.numer.cmp(&b.numer)
}
}
@ -352,8 +344,17 @@ impl<T: Unsigned> Neg for Frac<T> {
}
}
#[cfg_attr(tarpaulin, skip)]
#[cfg(test)]
mod tests {
use super::*;
#[test]
#[should_panic(expected = "Fraction can not have a zero denominator")]
fn zero_denom() {
Frac::raw(1u8, 0u8, Sign::default());
}
#[test]
fn macro_test() {
let frac1 = frac!(1 / 3);
@ -366,5 +367,9 @@ mod tests {
assert_eq!(frac!(3 / 2), frac!(1 1/2));
assert_eq!(frac!(3 / 1), frac!(3));
assert_eq!(-frac!(1/2), frac!(-1/2));
assert_eq!(-frac!(1/2), frac!(1/-2));
assert_eq!(frac!(1/2), frac!(-1/-2));
}
}

View File

@ -1,3 +1,5 @@
#![cfg_attr(tarpaulin, skip)]
use rusty_numbers::frac;
#[test]
@ -33,6 +35,7 @@ fn sub_test() {
#[test]
fn cmp_test() {
assert!(frac!(1/2) <= frac!(1/2));
assert!(frac!(0) < frac!(1));
assert!(-frac!(5 / 3) < frac!(1 / 10_000));
assert!(frac!(1 / 10_000) > -frac!(10));
@ -54,3 +57,32 @@ fn negative_mul_div() {
assert_eq!(-frac!(1 / 12), frac!(1 / 3) * -frac!(1 / 4));
assert_eq!(frac!(1 / 12), -frac!(1 / 3) * -frac!(1 / 4));
}
#[test]
#[should_panic(expected = "Fraction can not have a zero denominator")]
fn zero_denom() {
frac!(1 / 0);
}
#[test]
fn op_assign() {
// Addition
let mut quart = frac!(1/4);
quart += frac!(1/4);
assert_eq!(frac!(1/2), quart);
// Subtraction
let mut half = frac!(1/2);
half -= frac!(1/4);
assert_eq!(frac!(1/4), half);
// Multiplication
let mut half = frac!(1/2);
half *= frac!(1/2);
assert_eq!(frac!(1/4), half);
// Division
let mut quart = frac!(1/4);
quart /= frac!(4);
assert_eq!(frac!(1/16), quart);
}