The Elf says they've stopped producing snow because they aren't getting any **water**! He isn't sure why the water stopped;
however, he can show you how to get to the water source to check it out for yourself. It's just up ahead!
As you continue your walk, the Elf poses a second question: in each game you played, **what is the fewest number of cubes
of each color** that could have been in the bag to make the game possible?
Again consider the example games from earlier:
```
Game 1: 3 blue, 4 red; 1 red, 2 green, 6 blue; 2 green
Game 2: 1 blue, 2 green; 3 green, 4 blue, 1 red; 1 green, 1 blue
Game 3: 8 green, 6 blue, 20 red; 5 blue, 4 red, 13 green; 5 green, 1 red
Game 4: 1 green, 3 red, 6 blue; 3 green, 6 red; 3 green, 15 blue, 14 red
Game 5: 6 red, 1 blue, 3 green; 2 blue, 1 red, 2 green
```
- In game 1, the game could have been played with as few as 4 red, 2 green, and 6 blue cubes. If any color had even one fewer cube, the game would have been impossible.
- Game 2 could have been played with a minimum of 1 red, 3 green, and 4 blue cubes.
- Game 3 must have been played with at least 20 red, 13 green, and 6 blue cubes.
- Game 4 required at least 14 red, 3 green, and 15 blue cubes.
- Game 5 needed no fewer than 6 red, 3 green, and 2 blue cubes in the bag.
The **power** of a set of cubes is equal to the numbers of red, green, and blue cubes multiplied together.
The power of the minimum set of cubes in game 1 is `48`. In games 2-5 it was `12`, `1560`, `630`, and `36`, respectively.
Adding up these five powers produces the sum `**2286**`.
For each game, find the minimum set of cubes that must have been present. **What is the sum of the power of these sets?**